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1. INTRODUCTION

The purpose of this paper is to develop a unified approach to the charac­
terization of solutions of constrained and unconstrained approximation
problems. Several papers have been written on the characterization of
solutions of special approximation problems with particular types of con­
straints or without constraints. For uniform approximation a general theory
has been obtained by using generalized weight functions. Recently a new
approach via optimization theory has been presented in [1]. The idea is to
show, first, that the local Kolmogoroff condition is satisfied. Assuming a
convexity condition, it can be shown that the local Kolmogoroff condition
implies the Kolmogoroff criterion. Hence best approximations are charac­
terized by the local Kolmogoroff condition.

An essential restriction in [1] is the assumption oflinear equality constraints
For uniform approximation problems with nonlinear equality constraints,
the local Kolmogoroff condition has been deduced in [2] under the assumption
(If a regularity condition that does not seem to be practical. By deleting
inequality constraints a more satisfactory regularity condition has been
studied in [3].

Our aim is to treat approximation problems with nonlinear equality
and inequality constraints in a normed linear space and to present a new and
i;atisfactory regularity condition. As in [1], we consider the problem as a
particular type of optimization problem.

Applying new kinds of differentiability, a new approach to optimization
problems has been developed in [4]. A generalization of the well-known
Lagrange multiplier theorem has been obtained that can be applied to
convex optimization problems as well as to differentiable optimization
problems. Here we shall apply this theorem to approximation problems with
constraints. In particular we obtain new characterization theorems for
constrained Lp-approximation problems of continuous functions.
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2. THE MAXIMUM PRINCIPLE

We assume that 1 is a finite set, r j (j E 1) are compact topological spaces,
E and Z are Banach spaces, and M o is an open subset of E. Let the mappings
gT.j : E ---'>- IR (T E r j , j E I), p: E -)0. Z, and f: E -)0. IR be given. The problem
is to characterize a (local) minimum off on the set

M = n n {x E E: gT.JCX) 0: n {x E E: pix)
JET ,Er j

Let Gj(x)c~ max{gT.;(x) : T E r j } (x E E, j E/). Then the problem is equivalent
to: find a (local) minimum offon the set {x E Mo : Gj(x) 0 (j E f). pix) '6l}

Let T > O. The set of mappings r: (0, T] --)0. Eso that limt-l) (r(f)/t) 6l is
denoted by HT(E) and H(E) UT>O HT(E).

DEFINITION. Let El and E2 be normed linear spaces and X o E E1 .

(a) Let C C E 2 and y: E l --+ E2 a mapping. A mapping y'(xo): E l -)0. £2
is called an H(E1)-variation of y at X o with respect to C, if hE E, y'(xo) h E C
and r E H(El ) imply the existence ofa T > 0 so that (l!t)(y(xo th -- r(t)

y(xo» E C for every t E (0, T].

(b) The mapping y: El ---'>- £2 is called G-differentiable at xo , jf there
is a continuous, linear mapping y'(xo): £1 ~)o. £2 so that for every hE £
limt~o+(1!t)(y(xo __e_ th) -- y(xo») , y'(xo)h.

(c) Let r be a compact topological space. A set of mappings YT :
E1 --->- E2 (T E r) has property:

(I) (D) at x o , if there is a neighborhood U of X o so that the mapping
T, x c..+ YT(X) (r x U ---'>- E2) is continuous.

(2) (D I) at Xo , if

(i) it has property (D) at X o , and

(ii) there is a neighborhood U of Xo so that for every T E r YT is
G-differentiable at every x E Uand the mapping(T, x, h)---'>- y/(x)h (T U

El ---'>- E2) is continuous.

(d) A mapping y: E1 --->- E2 has property (D2) at X o , if

(i) y is continuous at X o

(ii) there is a neighborhood U of X o so that y is G-differentiable at
every x E U and the mapping x I--->- y'(x) (U ---'>- E*) is continuous. E* denotes
the normed, linear space of continuous, linear functionals on E.

Let us introduce the notation for Xo E M

rj(xo) = {T E r j : gT.j(XO) = O}

10 = {j E I: r;(xo) =F 0},

(x E £,jE 1),
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and G/(xo)h = max{g~ixo)h : T E Ti(xo)} (j E 10 , X E U, hE E) if (gT,i)TEr
i

has property (D1) at Xo •

LEMMA 1. Letj E 10 and Xo E M. Suppose (gT,j)TEr has property (Dl) at Xo'
If h E E and G/(xo)h < 0, then for every r E H(E) 'there is a f > 0 so that
Glxo + th + r(t» < 0 for every t E (0, f].

Proof Let Ii E E with G/(xo)1i < 0,

For brevity we now omit the subscript j.
There is a neighborhood U of Xo so that the mapping (T, x, h) -+ g/(x)h

(T X U X E -+ IR) is continuous. Thus there are an open neighborhood
To of T(xo), an open, convex neighborhood Uo of xo , and an open neigh­
borhood Vo of Ii so that g/(x)h < 0/2 for every T E To, X E Uo, and hE Vo .
Since T ~ To =? gixo) < °and since T\To is compact, we have

jf T1 = T\To ¥= 0.

Let r E H(E). There is a t1 > 0 so that X o + tli + r(t) E Uo and Ii +
(r(t)/t) E Vo for every t E (0, t1]. If T 1 ¥= 0 then choose t2 E (0, t1 ] so that

t2 sup l!g/(Xo+ Otli + Or(t» (Ii + r~»)11 TETl ,

t E (0, t1 ], BE [0, 1]1 < -p..

By the mean value theorem we obtain

gT(XO + tli + r(t» - gixo) = tg/(xo + 8tli + 8r(t» (Ii + r;t)).

Thus

for every T E To and t E (0, tl J.
If T = To then gixo + tli + r(t» < °for every T E T and t E (0, t1 ] and

the proof is complete. Now suppose To ¥= T. For T E T\To and t E (0, t2] we
obtain

gixo + tli + ret»~ ~ tg/(xo + 8tli + 8r(t» (Ii + r~t)) + p.

~ p. + t21 g/(xo + 8tli + 8r(t» (Ii + r~»)/ < 0,

hence gixo + tli + r(t» < 0 for every T E T and t E (0, t2].
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COROLLARY 2. If the conditions of Lemma I are satisfied, then G/(xo) is a
H(E)-variation of Gj at Xo with respect to ( -- 00, 0).

Now we apply Theorem II, 2.4 of [4, Maximumprinzip] and obtain
Theorem 3. Let X o E M. Assume that the sets (gT,J7ET, (j E 10) have property
(0 I) at X o , P has property (02) at x o , and the sets (gT,JTcr; (j E I/o) have
property (D) at x o ' If Xu is a local minimum offon M, and there is a convex
H(E)-variation f'(xo) of f at Xl) with respect to (- 00, 0), then there are
numbers t ;:;,. 0, I; 0 (j E 10), and a linear functional c/> on Z so that

L IjG/(xu) h ., c/> p'(xo) h
J(:IIJ

o

for every h E E; at least one number I or I, or the functional c/> is different
from 0 or e, respectively,

If p'(xo) is surjective and there is an ho E E so that G/(xo)ho 0 for every
j E 10 and p'(xo)ho = e, then t O. We call Xo regular if this condition holds,
M is regular if every X E M is regular.

3. THE LOCAL KOLMOGOROFF CONDITION

Suppose T is a normed linear space and V is a subset of T. The set of best
approximations to IV E T with respect to V is the set

P[w, V] .C~ {voE V: for every v E V W V

Let Z" be the set of linear functionals Ion T such that I( IV I'u) H'" Co

"and I/(z)i ~ Ii z Ii for every z E T. The global Kolmogoroff criterion is. If V is
convex then Vu E P[IV, V] if and only if

min{/(l' o

for every v E V. For an elementary proof without using extremal functionals
see [4].

Let E be a Banach space and let F: E ->- T be a mapping. We consider
the approximation by elements of the set V F[M] where M is defined as
in Section 2, In this Section we assume that XOEM, F is Frechet differentiable
at X o , the sets (gT,j)TEr, and the mappingp satisfy the conditions of Theorem 3.
Letf: E --+ IR. be defined by f(x) c= ',I IV -- F(x)ll (x E E). Then 1'0 "= FoCxo) is a
best approximation to IV with respect to F[M], if and only if Xo is a minimum
offon M. Applying [4, Lemma 1I, 3.2 and Lemma II, 4.5] we obtain

LEMMA 4. The mapping j'(xo): E --->- IR. defined by

!'exo)h c = I: IV - F(xl)) - F(xo)h II - 11 w - F(xo)11

is a convex H(E)-variation off at Xo with respect to ( - 00, 0).

(h E E)
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Let E(xo) = {h E E : p'(xo)h = e, G/(xo)h <; 0 (j E I o)}. F'(xo) [E(xo)] is
convex. Thus Corollary 2 and Theorem 3 imply

THEOREM 5. If Vo = F(xo) is a best approximation to wand Xo is regular,
then e E pew - F(xo), F'(xo) [E(xo)]] andfor every h E E(xo)

min{1 0 F'(xo) h: IE L'w-vo} ~ 0

(local Kolmogoroffcondition).

If we particulaire Theorem 5 to the uniform approximation of continuous
functions, we obtain a result of Hoffmann [2]; in view of Ljusternik's theorem
(see [4J) our regularity condition implies the condition used in [2] so it is
more restrictive, but it seems to be easier to apply.

We point out that the general theory developed in [4] is as well applicable
to approximation problems with asymmetric norms as the one used in [5].

4. THE e OF CONVEX HULL THEOREM

In addition to the assumptions of Section 3 we suppose that there are
elements e1 ,... , en E E with span{F'(xo) e1,... , F'(xo)en} = F'(xo) [P(xo)] where
P(xo) = {hEE:p'(xo)h = @}.LetAj(xo)betheset of vectors -(g~jxo)e1>""

g;jxo)en) with T E Tlxo) and j E 10 and A(xo) the set of vectors (I' F'(xO)e1,... ,
I . F'(xo)en) with IE L'w-vo' Suppose that @ rf= con{A(xo) u UiEIo Aj(xo)}'
Applying the separation theorem there is an Ii E P(xo) so that I . F'(xo)h > 0
for every IE L'w-vo and g;,j(xo)h < 0 for every T E Tj(xo) and j E 10 , Hence
h E E(xo) which contradicts Theorem 5 if Xo is regular. But if Xo is regular
then e rf= con{UiEIo Alxo)}' So we have proved.

Theorem 6. If vo = F(xo) is a best approximation to wand X ois regular,
then e can be written as a convex combination of elements of the set
A(xo) u UjeI Aj(xo) with at least one point from the set A(xo) included

o
nontrivially.

5. REGULARITY

In this section it will be shown that many constrained approximation
problems are regular.

EXAMPLE 1. Linear equality or inequality constraints on parameters [6-9].

(a) E = jRn, Z = jRm, M = {x E E : Ax = b}, A is a real m X n­
matrix, bE jRm. M is regular if A is surjective (rank A = m).

(b) E = jRn, J1 C {I,... , n}, J2 C {I,... , n}, aj (j E J2) are positive real
numbers, M = {x E E: Xj ~ 0 if j E J1 , I Xj I <; OJ if j E J2}. M is regular.
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EXAMPLE 2. Monotone approximation [10]. K E: No, n E: N, VI, ... ,
Vn E: CK[O, 1],1 = {j E: 7L : 1 ~j ~ K + I}. Let r 1 , , r K+1 be closed subsets
of [0, I] and EO"'" EK E:{-I, I}. Suppose u1, ,UKEC[0, 1] are given:
E '"~ IRn:

(a) K = 0, span{vl ,... , l'n} is a Haar space. Then there is a i E: span
{VI, ... , Vn} so that Eoi(t) < °for every t E: [0, I]. Hence M is regular.

(b) K;?· I, span {VI, ... , Vn} = pn-l (polynomials of degree ~n - I).

Then there is a i E: pn-l so that Ej'V(j)(t) < °for every t E [0, 1] and j .c=

0, 1, ... , K (see [10]). Hence M is regular.

EXAMPLE 3. Restricted range approximation [5, 11-15]. n E: N, VI"'" I'n E

qo, 1] linear independent. Let r be a closed subset of [0, 1], E IR",
1 = {l, 2}, and I, U E C[O, 1]:

"
gT.l(Xl , •.. , x n ) = I.Y"V,,(T) -' U(T)

1

n

gT.2(X1 , ... , X n ) = I(T) - I x"v,,(T)
1

(T E: r, x E E),

(T E: r, x E: E).

Suppose I(T) < U(T) for every T E r and assume that at least two points x,
x E M are given so that L~' (x" - x,,) V" + e. Let V = span{v1 , ... , vn}. For
V E V the mapping U v : r --+ {-I, 0, I} is given by

( : 1
1- -I

( °
if VeT) = U(T)
if v(T) = I(T)
jf I(T) <::: veT) < u(T).

Suppose V is a Haar space. Let v E V, I(T) ~ VeT) ~ U(T) for every T E r
and °~ TO < ... < Tn ::::; l. Then there is a j E {a, 1, ... , n - I} so that
Uv(Tj) Uv(Ti+l) + -1. That means v "alternates" at most n times. Then there
is a V E V so that VeT) < °if VeT) = u(T) and VeT) > 0 if VeT) = I(T) (use a
theorem of Krein (see [26]) on polynomials of Haar spaces with prescribed
zeros). Then M is regular.

A similar argument shows that the problem is regular if rational restricted
range approximation is considered. If I(T) ~ U(T) is assumed as in [16-18]
we do not know if the problem remains regular.

EXAMPLE 4. Interpolatory constraints [3, 19-24].
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When considering nonlinear equality constraints only our regularity
condition is more general than the condition used in [3]. Hence problems
with interpolatory constraints, as considered in [3], are regular.

EXAMPLE 5. Interpolatory constraints and inequality constraints on
parameters.

Let n EN, r EN. E = IR.n, Z = IR.T, u1 , ••• , Un E qo, 1] linear independent
so that span{u1 , ... , un} is a Haar space, 0 < 11 < ... < IT < I; a1 , ••• , aT E IR..
Letgix1 , ... , Xn) = -Xj (jE {I, ... , n}, x EE)p(x1 , ••. , Xn) = (L Xjull1) - a1 , ••. ,

L XjullT) - aT) (x E E). Let J C {I, ... , n} so that x E M j ¢ J imply Xj = °
and there is a X E M so that Xj > °for every j E J.

Let Xo E M and h = x - Xo . p'(xo) is surjective, p'(xo) h = e, g/(xo)h =

-hj = -Xj < °if j E 10 • Hence M is regular.

6. CHARACTERIZATION OF SOLUTIONS

If F[M] is an a-sun(see[25]), then best approximations are characterized
by the Kolmogoroff criterion. A sufficient condition for F[M] to be an ex-sun
is a property, we call it property S, used in [25]. If this condition is satisfied,
then best approximations are characterized by the local Kolmogoroff
condition.

DEFINITION. (F, M) has property S, if the following holds. Suppose v,
Vo E F[M], v =1= vo , wET, and 1(1) - vol > °for every 1E 2:w- v • Then thereo
are X o E M, hE E(xo), so thatF(xo) = Voand I· F'(xo)h > °for every 1E2:w- vo"

IfF is linear, p and gr.i (T E T, j E I) are linear, then (F, M) has property S.
In (1-3,5,9-11, 13, 14, 19,20,24] linear uniform approximation problems
with linear constraints are studied. For those problems regularity has been
proved in Section 5. Since in these problems (F, M) has property S, best
approximations are characterized by the local Kolmogoroff condition.
Our result implies furthermore that for linear Lp-approximation problems
with linear constraints this statement equally holds. We drop the detailed
presentation of these results.

7. ApPLICATIONS TO RATIONAL ApPROXIMATION

Let n, mEN. Let u1 , •.• , Un E C[O, 1] and VI, .•• , Vm E C[O, 1] be two sets
of linear independent functions:

N = lYE IR.m: ~ yjvlt) > °for every IE [0, l]~,
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E = ~n X ~m, M o = ~n N. Let the mappings P: (Rn -+ C[O, 1], Q:
~m -+ C[O, 1], and F: M o -+ C[O, 1] be defined by

n

P(x) L XjUj

1

III

Q( y) =- L .If)
1

F(x, y) cc: P(x)/Q(y)

(x E [R"),

(y E (R1I1),

«x, y) E M o).

We consider best uniform approximations of continuous functions from
F[M], where M is some subset of Mo .

(a) Suppose r is a compact subset of [0, I]. Let 1, U E C[O, 1] so that
leT) < U(T) for every T E r.

g,.,l(X, y) = F(x, Y)(T) ~ U(T) (T E r, (x, y) E M o),

gT,2(X, y) = ~F(x, Y)(T) +- leT) (T E T, (x, y) E M o),

M = {(x, y) E M o : gT.l(X, y) :::;; 0, gT,2(X, y) ~ 0 for every T E T}.

(b) Let Rand S be k /( nand k >~ m-matrices so that rankeR, S) = k.

p(x, y) Rx T S)' «x, y) E E,

M = {(x, y) E E :p(x, y) B}.

(c) Let I C {I, ... , n}.

gj(X, y) = ~Xj (j E I, (x, y) E E),

M = {(x, y) E E : glx, y) :::;; 0 for every j E I}.

Let us extend F and gT.i (T E r, j E {I, 2}) to E. As we have seen in Section 5
M is regular if it is defined as in (a), (b), and (c).

For (x, y) E M o let

To(x, y) = span{u1 , ... , Un, --F(x, Y)V1 , ... , -F(x, Y)V m }

and

T(x, y) = {hIQ( y) : h E To(x. y)}.

Then for (x, y) E M F(x, y) [E(x, y)] is in:

Case (a), the set of functions q EO T(x, y) so that q(T) :::;; 0 if

F(x, Y)(T) = U(T) and if F(x, Y)(T) == I(T).
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Case (b), the set of functions q ccc (2:, ajUj ~- F(x, y) L bjvj)fQ( .1') EO

T(x, y) so that Ra + Sb c:= e.
Case (c), the set of functions q

so that aj °if j E I and Xj -= O.

If Lx, ~v), (x, .J.!) E M then there is a q E T(x, y) so that

F(.x, 5') ~-- F(x, y) (Q(y)iQ( y»)q.

Since Q(y)(t) ° for every t E [0, ]] and )' EN U: M) has property S.
Hence best approximations are characterized by the local Kolmogoroff
condition. For case (b) that has already been proved in [7].
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